Center-like elements in prime rings
نویسندگان
چکیده
منابع مشابه
Center--like subsets in rings with derivations or epimorphisms
We introduce center-like subsets Z*(R,f), Z**(R,f) and Z1(R,f), where R is a ring and f is a map from R to R. For f a derivation or a non-identity epimorphism and R a suitably-chosen prime or semiprime ring, we prove that these sets coincide with the center of R.
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملcenter--like subsets in rings with derivations or epimorphisms
we introduce center-like subsets z*(r,f), z**(r,f) and z1(r,f), where r is a ring and f is a map from r to r. for f a derivation or a non-identity epimorphism and r a suitably-chosen prime or semiprime ring, we prove that these sets coincide with the center of r.
متن کاملON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1979
ISSN: 0021-8693
DOI: 10.1016/0021-8693(79)90102-9